
Int. J. Multiphase Flow Vol. 16, No. 4, pp. 713-725, 1990 0301-9322/90 $3.00 + 0.00 
Printed in Great Britain. All rights reserved Copyright © 1990 Pergamon Press/Elsevier 

PARTICLE TRAJECTORIES NEAR FREELY ROTATING 
SPHEROIDS IN SIMPLE SHEAR FLOW 

J. PETLICKI and T. G. M. VAN DE WEN 
Pulp and Paper Research Institute of Canada and Department of Chemistry, McGill University, 

Montreal, Quebec H3A 2A7, Canada 

(Received 15 June 1989; in revised form 15 February 1990) 

Abstract--Equations to describe the velocity of a spherical particle near a freely rotating spheroid in 
simple shear flow have been formulated and integrated numerically. Both hydrodynamic and colloidal 
interactions have been taken into account. Examples are given of trajectories of particles leading to capture 
in primary or secondary energy minima. 

I N T R O D U C T I O N  

Most of the theoretical literature on the motion and interactions between particles in flowing 
suspensions deals with spherical particles, in the main with equal ones. Many real flowing systems 
relevant to industry, medicine, agriculture and other fields consist of at least two types of particles 
of completely different shape, size and surface properties, interacting hydrodynamically and 
colloidally. If  the particles differ appreciably in size, and the larger ones are more rod- or disk-like 
than spherical, as, for example, fillers and fibers in papermaking (van de Ven & Mason 1981), it 
seems to be more accurate to approximate the shape of the larger particles as spheroids. 

Adamczyk & van de Ven (1983) described and classified pathlines of the fluid element about a 
spheroid freely rotating in a simple shear flow. In this paper, in order to make the model more 
realistic, we have included in the theory hydrodynamic and colloidal interactions between a small 
(but non-Brownian) spherical particle and a large spheroidal collector. Since the general solution 
is rather complicated, we also discuss simpler but important particular cases of the general solution. 
Finally, we present selected particle trajectories. 

T H E O R Y  

We consider a spheroidal collector (with axis ratio re = a/b,  a being the symmetry semi-axis and 
b a semi-axis perpendicular to it) which is smooth, rigid and suspended under neutrally buoyant 
conditions in a viscous Newtonian fluid, subjected to a low Reynolds number simple shear flow. 

Relative to a space-fixed Cartesian coordinate frame X' (figure 1) with the origin coinciding with 
the collector center, the undisturbed flow v' is taken to be 

v; = 6~3Gx'2, [ll 

where 3ij is the Kronecker delta and G the shear rate. We employ particle-fixed Cartesian 
coordinates X~ (with their origin at the center of the spheroid) with the Xraxis aligned along the 
symmetry axis of the spheroid. The transformation from the X-frame to the X'-frame is carried 
out via the rotation matrix ~ij, 

x; = ~, jxj ,  [2] 

which itself is defined in terms of the Euler angles 0, q~ and ~b: 

cos 0 
:tij = sin 0 cos ~b 

sin 0 sin q5 

- s i n  0 cos 
- s i n  q~ sin ~ + cos 0 cos q~ cos 

cos ~b sin q /+  cos 0 sin tk cos qJ 

sin0 sin  ;) 
- sin q~ cos O - cos 0 cos ~b sin . 

cos ~b cos 0 - cos 0 sin q~ sin 
[31 
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The angular velocity to of the spheroid relative to the fixed frame X' is 

to - - - -  0)3 0 - -  I , 

- - 0 ) 2  0)1 

where the cois are the spins of the spheroid about their respective axes: 

0), =q; cos0, 

0)2 = O sin ~k - ~ sin 0 cos qJ 

and 

[4] 

[5a] 

[5b] 

where 

= -½GB cos 0 cos 2~b, [6c] 

and 

with 

r~ z -  1 
B ~ - -  

r2+ 1 

Equation [6c] gives rise to an elliptic integral, but [6a] and [6b] can be integrated analytically with 
the result: 

tan 0 = C(r~ sin 2 T + cos z z)l/2 [7a] 

tan ~b = re tan ~ [7b] 

Gt ( t a n  ~o'), [7c] = - - - - ] -  + tan- '  \ ~ /  

r e + -  
re 

4~0 being the value of the azimuthal angle at time t = 0. 
The integration constant C is termed the orbit constant and describes the precession of the 

symmetry axis of the spheroid about the vorticity axis of the undisturbed flow (Xi-axis). The orbit 
constant ranges from C = 0 (the symmetry axis parallel to the undisturbed vorticity) to C = ~ (the 
symmetry axis in the plane perpendicular to the undisturbed vorticity). 

According to [7b] the motion of a spheroid is periodic, with the period given by 

T = ~ -  r e ~ e  " [8]  

The spin 0)~ of the spheroid about the symmetry axis X, is a simple function of the polar angle 
0. Substituting [6b] and [6c] into [5a], one obtains: 

G 
0)1 = -~- cos 0. [9] 

Thus, the spheroid spins with constant angular velocity 0)t = G/2 when C = 0 and does not spin 
when C = ~ .  Additionally, from [7a-c] and [9] it follows that for C ~ (0, ~ )  the spin of prolate 
spheroids (r e > 1) is maximal for aximuthal angles q~ = nn, where n = 0, 1, 2 . . .  (i.e. when the 
spheroid is oriented across the stream), and minimal in the aligned position when ~b = (1/2 + n)n. 
For oblate spheroids the opposite is true. 

and 

0)3 = 0 cos ~O + q~ sin 0 sin ~b, [5c] 

and where 0, q~ and qJ denote the time derivatives of the three Euler angles. 
The motion of a spheroid in simple shear in terms of the Euler angles was determined by Jeffery 

(1922): 
0 = ¼GB sin 20 sin 2~b, [6a] 

q~ = ½G(1 + B cos 2q~) [6b] 
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Figure 1. Particle fixed coordinate frame X relative to space 
fixed coordinate system X'. The X~-axis coincides with the 
symmetry axis of the spheroid; 0, ~b and @ are the three Euler 

angles. 

X 1 

~2 

Figure 2. Cross section of one quadrant of the spheroid 
in the plane determined by the center of the particle 
P(x , ,  x2, x3) and the projection r of the position vector R on 
the X2X3-plane. ~, and ~ are angles appearing in matrix [17]. 

The equations of  motion [6a-c] were deduced by Jeffery (1922) from the flow field about  a 
spheroid arbitrarily oriented, but instantaneously fixed relative to the X'-frame.  Since the no-slip 
boundary condition at the spheroid surface is assumed, Jeffery's fluid velocity field v J must be 
transformed to one rotating with the spheroid frame X. This transformation can be expressed as 
(Adamczyk & van de Ven 1983) 

v = v J - t a x  R, [10a] 

where R is the position vector and R 2 =  x~ + x~ + x23. The complete expressions for v J are given 
in the appendix. 

In general, the flow field near the spheroid is changing periodically in time with a period equal 
to the period of  rotation of  the spheroid T and depends on the orbit constant C. Moreover,  the 
instantaneous velocity vector v depends on the orientation of  the spheroid in space and the fluid 
element position relative to the spheroid surface. 

For  a spheroid with its symmetry axis aligned along the vorticity axis in the undisturbed linear 
shear flow (orbit constant C = 0), the flow field becomes simplified and after transformation of[10a] 
to the fixed Cartesian frame X' ,  the flow can be expressed as (see the appendix): 

°[ l , , 22P x i x 2 x  3 , , , 
vi = Gx26~3 - 2e; (1 + 2)4(r~ + 2) 1/2 + e (x26~3 + x36~2) , [lOb] 

where 2 is the spheroidal coordinate (see the appendix), 

1 x~ 2 X ' z Z + X ;  2 

p2 = (r~ + 2) ----------~ 4- (1 + 2) 2 [11] 

and 
~, = d). 

(1 + 2)3(r 2 + 2) 1/2 ; [12] 

=t6 denotes the same integral as the one for ~', but with the lower limit equal to 0. In this particular 
case the flow field is in a steady state and the velocity vector v depends on the orientation of the 
fluid element relative to the spheroid surface only. For  a sphere (re = l) the expression [10b] is the 
same as given by Cox e t  al. (1968). 

Let us next consider a rigid spherical particle in the neighborhood of  a spheroidal collector and 
which is small compared to the spheroid. Far  from the spheroid the particle center moves with 
velocity v, but in the vicinity of  the collector the particle velocity is different because of part icle-  
collector hydrodynamic and colloidal interactions. The instantaneous fluid velocity v at the center 
of  the particle can be decomposed into a simple shear and a stagnation point flow. For  these 
particular cases the creeping flow solutions for a sphere near a plane are known as functions of  
the normal distance between the particle center and the collector surface (Brenner 1961; Goren & 
O'Neill 1971; Goldman e t  al. 1967). 
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In the rotating frame the instantaneous normal distance d (cf. figure 2) lies in a plane which is 
determined by the center of the particle and the projection r of the position vector R on the 
X2X3-plane, thus reducing the problem to a two-dimensional one. The normal distance can 
be calculated by solving the equations of the line normal to the ellipse in the point (xt °, r °) and 
of the surface of the ellipse: 

and 

X 1 - -  X ° r - -  r ° 

re xO r ~  = 0 [13] 

O2 x I r °2 
a~ + ~ = 1. [14] 

The distance d then equals 

where 

d = [(x, -- x°) 2 + (r - -  r ° ) 2 ]  I/2, 

r = + x ] )  '/2. 

We employ the transformation matrix fl~j: 

flcosy - s i n y c o s  

fl~i = ksi~ 7 cos~,_ sinC°S~ 

-sin y sin ~ \ 

cos y sin ~ 

cos  / 

X 3  X 1 - -  X 0 
s i n T = - - ,  s i n ¢ -  

r d 

with 

and 
X 2 r - -  r ° 

COS~/ = - - ,  C O S ~ - - - -  
r d 

[15] 

[16] 

[17] 

It can be shown that flij transforms the instantaneous velocity components of the fluid element 
in the center of the particle vi from the local Cartesian coordinates connected with the rotating 
frame X to a frame in which the velocity component v ~ is normal to the spheroid surface and the 
components v'l' and v3' are parallel to the surface of the spheroid, v'l' being in the Xi r-plane. 

From the components v~' near the collector the particle velocity u can be found from (Adamczyk 
et al. 1983) 

. . . .  [18a] U I - -  f 3 v i ,  

u'3' = Fi F2v3' + Uco, [18b] 

and 
rt t! u 3 = F3v3, [18c] 

Fi being the universal hydrodynamic correction functions tabulated by Brenner (1961), Goldman 
et al. (1987) and Goren & O'Neill (1971) and ucoH is the velocity due to colloidal forces. 

The functions F~ were approximated by the following expressions (Dabros et al. 1977): 

H 
F I = H + I '  [19a] 

2.23(H + 1 ) -  H 
F2 = (H + 1) 2 [19b] 

and 

I 5 1 [19c] F3 = K 1 16(H + 1) 3. ' 

for H > 0.3 and K = 1.13 + 0.08 In H for 1 0  - 6  < H < 0.3. Here H = Map is the gap with K = 1 
width normalized by the particle radius ap. The maximum deviation of these expressions from the 
tabulated values is about 5%. 
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The velocity of the particle due to colloidal forces F~o~, which can be derived from interaction 
energies (Hogg et  al. 1966; Wiese & Healy 1969), can be expressed as follows: 

El Feou [20] 
no°it = 6n/tap ' 

and 

FcoH = Fattr + Fel, [21] 

_ Zap  r. 1 +  3.54p .] 
Fattr = 6h2 I_ (1 + 1.77p)2_] for p < 1 

A a p / / 0 . 9 8  0.434 0.0674"~ 
6h 2 \  p p----T- + p3 j f o r p > l  [22] 

n 2~,~2 - (~  + ~2) exp ( -  xh) 
Fel = -~- ee0 rap sinh(xh) ' [23] 

where Fattr and Fel are van der Waals attraction forces and the electrostatic forces due to 
double-layer interactions, A is the Hamaker constant,/t  and e are viscosity and dielectric constant, 
respectively, of the suspending fluid, e0 is the permittivity of free space, ~ are the zeta potentials 
of the particle and of the collector, x is the reciprocal double-layer parameter and p is the 
retardation parameter defined as p = 2nh/2L, 2L being the London wavelength. 

The particle velocity components u~ can be expressed as linear combinations of the flow field 
components v~ and the colloidal velocity Ucotl: 

Ul = [F3 + f l21(FIF2 - F3)] Vl + C2Vz "~ C3/)3 "~ fl21Ucoll, [24a] 

and 

where 

u: = c:v,  + [F~ + ~ ( F I F :  - F~)]v: + ClV~ + &~Uooll 

u3 = C3Vl + ClV: + IF3 + f l~3(FiF2 - F3)]v3 + fl23 U¢oll, 

Cl = t~22/~:3 (El F2 - F~),  

[24b] 

[24c] 

[25a] 

c2 = fl21 f122(Fi 1:2 - F3) [25b] 

and 
C3 ~--" f121 f123(Fi F2 - F3), [25c] 

and flij are elements of the matrix [17]. 
The particle trajectory can now be found by integrating [24a-c] and [6c] numerically with respect 

to time.t Both the particle position and the spheroid orientation in space must be specified as initial 
conditions. Since, by means of [2], the components of the position vector xi can be transformed 
in between coordinate frames rotating with the spheroid and fixed in space, the particle trajectories 
can be calculated in both frames. 

RESULTS AND DISCUSSION 

Since the theory outlined above is valid for any axis ratio re, it also applies to re = 1, i.e. with 
it we can calculate relative trajectories between a small and a large sphere. The solution of this 
problem is known from the literature (Adler 1981) and this case can serve as a limiting example 
for comparing our theory with literature results. Figure 3 shows a comparison of the minimum 
separation distance in the equatorial plane between two unequal spheres interacting hydrodynam- 
ically in simple shear flow for selected radius ratios calculated by P. M. Adler (private 
communication) and from our theory with r e = 1. When comparing our results with those of Adler 

tA FORTRAN version of the program is available from the authors upon request. 
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Figure 3. The minimum separation distance in the 
equatorial plane vs the radius ratio of two unequal spheres 
interacting hydrodynamically in a simple shear flow. 
Comparison of the values obtained from sphere-sphere 
and sphere-plane interaction models: I-q, sphere near plane; 

(3, sphere near sphere. 
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Figure 4. Influence of colloidal forces on the trajectories 
in the equatorial plane of two unequal spheres in a simple 
shear flow. The colloidal velocities were calculated using 
(a) Adler's (1981) and (b) Brenner's (1961) hydrodynamic 
correction functions. The length scale is normalized by the 
radius of the larger sphere b = 5/am. Initial position of the 
particle with ap/b =0.2:  x '  t = 0, x~ = 0.4, x~ = - 3 .  Shear 
rate G = 1 0 0 s  t, 2 L = 0 . 1 # m  ' # = l m P a s ,  e = 8 0  and 
(1 = - 8 . 3  mV. Remaining conditions for A (in 10 -2o J), xb 
and (2 (in mV): 1, (5, 100, -8 .3) ;  2, (5, 100, 8.3); 3, (50, 100, 

-8 .3 ) ;  4, (5, 60, -8 .3) .  

(1981), it can be seen that the results of his calculations should be used when the radius ratio exceeds 
0.2, but become inaccurate for lower radius radii. Below this limit, the hydrodynamic correction 
functions F~ approximated by [19a-c] can be used with very good accuracy. The hydrodynamic 
correction functions F2 and F3, for particles which are not very small compared to the large 
reference sphere, can be estimated from the expressions given by Adler (1981), but in this case the 
Jeffery (1922) orbit of the spheroid can be significantly perturbed by the presence of the particle. 
The hydrodynamic correction function F~ is the ratio of the particle velocity under an applied force 
normal to the collector surface, and the velocity which the particle would experience in an 
unbounded fluid under this same force. According to this definition, F~ must be normalized to one 
far from a collector surface. However, we noticed that Adler's (1981) correction functions, denoted 
by C in his paper, are not normalized to one. Figures 4(a, b) show the influence of the colloidal 
forces on the trajectories. In figure 4(a), the trajectories were calculated for various colloidal forces 
using Adler's values for F~. The results are indistinguishable from those given in figure 9 of Adler's 
(1981) paper, proving that our method is mathematically sound for r e = 1. In figure 4(b), Brenner's 
(1961) correction function F~ was used and the results show that the influence of colloidal forces 
is less significant than suggested by figure 4(a). 

The general solution of the particle velocity equations [24a-c] becomes simplified for gap 
widths h between particle and spheroid surfaces greater than the radius of the particle. From the 
values of Fi it follows that Fl F2 ~ 1 when h > ap. The equations of motion [24a-c] can then be 
reduced to 

ui = vi + fl2iUco, [26] 

and for weak colloidal interactions the particle, for all practical purposes, moves along the fluid 
pathline, i.e. as a fluid element at its center. Since pathlines about a spheroid were described by 
Adamczyk & van de Ven (1983), we will focus our attention on the case when the particle has a 
chance to approach the surface of the spheroid closer than its radius. 

In the absence of any repulsive colloidal forces the particle can be captured in the primary energy 
minimum. From the moment of physical contact the particle velocity relative to the collector 
surface is equal to zero and the particle moves as a point on the spheroid surface. Generally, these 
orbits are not closed (cf. figure 5). In the particular case when the particle is captured at the tip 
of the spheroid, the orbit is closed. For orbit constants C = 0 and C = oo the particle moves along 
a circle. 

In the presence of repulsive double-layer interactions, a non-Brownian particle can be perman- 
ently captured in the secondary energy minimum if either the shear rate is sufficiently low or the 
minimum is deep enough. In this case the particle moves relative to the spheroid surface. In the 
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Figure 5. Example of  a trajectory of  a particle captured in 
the primary energy minimum. The center of  the particle at 
the moment of  capture is marked by I-q. The length scale is 
normalized by the spheroid minor semi-axis with b = 10 #m 
and r e = 2. Projections on (a) X'2X~- and (b) X'l X~-planes. 
Initial position of  the particle with ap/b = 0.05: x~ = 0.6, 
x ; = 0 . 2 ,  x ~ = - 2 2 .  Initial spheroid orientation: ~b0=0 
and C = 1. G = 1 s -I,/~ = 1 mPa s, e = 80, A = 5 x 10-2° J, 

2 t =0.1 /~m and (~=0. 
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Figure 6. Energy profile and enlargement of  the secondary 
energy minimum (inset) vs dimensionless gap width calcu- 
lated for: ap = 0.5 pm, A = 5 x 10 -20 J, (l = (2 = - 2 0  mV, 
x = 2 x l 0 7 m  -I,  2L=0.1 / lm,  / ~ = l m P a s  and e = 8 0 .  

main this motion is tangential but, additionally, the particle oscillates in the energy minimum in 
the direction normal to the spheroid surface with an amplitude depending on the shape and position 
of the energy minimum and on the shear rate. In general, for C e (0, oo), each particle trajectory 
consists of three parts: (i) particle approach to the spheroid and its capture in the secondary 
minimum; (ii) movement along a non-stationary trajectory; and, finally, (iii) motions along the 
steady-state trajectory. 

An example of a trajectory computed for a selected energy barrier (figure 6) is shown in figures 
7-9. Figures 7-9(a, b) show the projection of the sphere trajectory on the X'2X'3- and X~X~-plane, 
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t /T 

Figure 7. An example of  particle approach to the spheroid 
and its capture in the secondary energy minimum (cf. figure 
6) marked by I-q. (a) and (b)--projections of  the trajectory 
on X'2X'3- and X~X~-planes, respectively. The length scale 
is normalized by the minor semi-axis of  the spheroid 
b = 10 #m with re = 2. (c) Dimensionless gap width vs time. 
Initial position of  the particle: x~ = 0.6, x~ = 0.2, x~ = - 2 2 .  
Initial spheroid orientation: ~ = 0 and C = 1. G = 0.01 s -t .  

The remaining parameters are as in figure 6. 
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Figure 8. Non-stationary part of  the particle trajectory 
captured in the secondary minimum. Continuation of  figure 
7 to an arbitrary moment marked by /~ (a and b) and 

beyond (c). 
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Figure 9. Steady-state trajectory (t/T >~ 20) of  the particle 
captured in the secondary energy minimum. Continuat ion 

of  figures 7 and 8. 
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Figure I0. Projections of  the steady-state trajectory (cf. 

figure 9) in frame X rotating with the spheroid. 

respectively. Figures 7-9(c) represent variations of the gap width between the particle and the 
spheroid in time. The time scale (normalized by the period of rotation of the spheroid) can be used 
to specify the instantaneous orientation of the spheroid in space (cf. [7a-c]). The steady-state part 
of this trajectory (cf. figure 9) is shown in figure 10 in the rotating frame X. 

It is interesting to note that in a particle-solvent-spheroid system for a fixed orbit constant C 
only two (one above and one below the plane of shear) steady-state trajectories (limit cycles) exist, 
regardless of the initial particle position and the initial spheroid orientation in azimuthal angle 4,0. 
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Figure 1 I. Steady-state secondary min imum trajectories of  
particles near the sphereoid rotating with C = oo. Projection 
in the rotating frame X. The remaining parameters (except 
the initial particle position: x '  I = 0.3, x', = 0.3, x~ = +22)  as 

in figures 6 and 7. 
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Figure 12. Example of  direct capture of  a particle during the 
first encounter. Projection of  the trajectory on X~X~-plane 
and dimensionless gap width vs time. Moment  of  capture is 
marked by A.  The length scale is normalized by the minor 
semi-axis of  the spheroid with b = 5 # m  and r c = 5. Initial 
particle orientation with ap/b = 0.2: x~ =0 .4 ,  x~ =0.33,  
x ] = - 2 2 .  Shear rate G = l s  -1, / ~ = l m P a s ,  e = 8 0 ,  
A = 5 x 10 -20 J, 2 L = 0.1 # m  and (~ = 0. Initial spheroid 

orientation: C = 1 and 4, 0 = 90 °. 
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In the particular case C = 0, only one trajectory exists which is nearly circular in the equatorial 
plane. A particle arriving at the spheroid away from the equatorial plane will slowly approach this 
limit cycle while orbiting the spheroid, due to a tangential velocity component caused by the 
curvature of the spheroid. For C = oo, there are two trajectories and the particle motion is 
two-dimensional in the X2X3-plane. The latter case is shown in figure 11 in the coordinate frame 
X, rotating with the spheroid, Of course the trajectories presented here are possible only in ideal 
systems in which particles are ideally smooth and uniform and a spheroid rotates exactly according 
to Jeffery's (1922) equations of motion. Since steady-state conditions are reached only after many 
periods of rotation their experimental verification in real systems can be rather problematic. 

The non-stationary part of a trajectory for a particle captured in a secondary minimum and the 
particle trajectory rotating with a spheroid (cf. figures 8 and 5) can be very similar. Differentiation 
between them is rather difficult since a particle moves slowly relative to a spheroid surface and 
oscillates with an amplitude not exceeding a few percent of its radius. Moreover, these oscillations 
and the thermal motion of particles usually overlap. 

From the infinite number of initial spheroid orientations in the azimuthal angle q50, it follows 
that the trajectory equations [24a-c] have an infinite number of solutions. In considering the 
transport of particles to the spheroidal collector, the state which will be reached by a particle after 
one or more encounters with a spheroid seems to be more important than the shape of its trajectory. 
We have identified five possible states: (i) direct capture; (ii) simple separation; (iii) delayed capture; 
(iv) delayed separation; and (v) capture in the flow field. State (i) is reached when a particle is 
immediately captured by a spheroid during the first encounter (cf. figure 12). State (ii) is defined 
by a single-pass trajectory (cf. figure 13). In states (iii) and (iv), a particle orbits a spheroid one 
or many times and in the end is captured (figure 14) or separates towards infinity (figure 15). 
Sometimes it is impossible to differentiate between states (iii) and (iv) in a reasonable amount of 
computation time. Thus we employ state (v), in which a particle is captured in the flow field about 
a spheroid (cf. figure 16). The probability that the particle reaches these states depends mainly on 
the orbit constant of the spheroid and its period of rotation. It is important to note that all the 
trajectories shown in figures 12-16 were selected for the same initial position of the particle and 
orbit constant of the spheroid: the only difference was the value of ~b at t = 0. 

C O N C L U D I N G  REMARKS 

In this paper we presented the solution for the particle velocity field near a spheroid freely 
rotating in a simple shear flow and we compared it with previously presented solutions for two 
unequal-sized spheres. 

From our general solution we concluded that a spherical particle moves almost unperturbed 
along a pathline when the gap width between the particle and the spheroid is greater than the 

x; 

2 lj ' 0 I I 
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Figure 13. Example of simple separation. ~b0= 100 °. 
Remaining parameters as in figure 12. 
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Figure 14. Example of delayed capture. ~b 0 = 155 °. Moment 
of capture marked by A. Remaining parameters as in 

figure 12. 
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Figure 15. Example of delayed separation (transient orbit). 

4~o = 200 °. Remaining parameters as in figure 12. 
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Figure 16. Example of capture in the flow field. ~b o = 50 °. 
Remaining parameters as in figure 12. 

particle radius. When the orbit constant C = 0, the flow field, [10a], is qualitatively the same as 
that for a sphere and only in this particular case does there exist a surface separating open from 
closed trajectories (van de Ven 1982). For a spheroid rotating with C > 0 the situation is much more 
complicated. Even if particles cross the same point in the undisturbed linear shear flow, the number 
of possible trajectories is infinite since, even for a fixed orbit constant, an infinite number of 
spheroid orientations exist with respect to the azimuthal angle th. Therefore, particles approaching 
the spheroid from the same location can be captured, separated to infinity after an encounter, 
orbit a spheroid one or more times and eventually be captured or separated. The probability of  
finding each of the above four situations depends (besides the initial location of  the particle) on 
the orbit constant and the period of  rotation of the spheroid. This last conclusion follows from 
our Monte-Carlo calculations, the results of which will be presented in a forthcoming publication. 

For sphere-spheroid systems in which a secondary minimum exists, capture in such a minimum 
results in stable limit cycles, the shape and location of which depend (besides the magnitude of  the 
colloidal forces) on the orbit constant. 
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APPENDIX 

In this appendix all variables are made dimensionless by division or multiplication by the 
appropriate combination of variables (G, b, #). 

Jeffery's (1922) solution of the creeping flow equations 

and 

with boundary conditions 

72 v J - Vp = 0 

V-v J = 0, 

/3~ = (.D2X 3 - -  (D3X2 ~ 

[A.I] 

and 

at the surface 

and 

far from the surface, where 

V J : (/)3Xl - -  (-/)1 X3 

V J3 : (./)1 X2 - -  (.O2X 1 , 

x2 t- x2 + x~=  l 
2 

re 

v~ = Dqxj 

/~21 ~31 0~22 0~31 ~X22 ~31~ 

Oij=~O~21tX32 0C22 0~32 0~23 (X33 / , 

\0~21 ~X33 tX22 0~33 ~X23 0~33 / 

ctij being elements of the matrix [3] can be expressed in terms of the spheroidal coordinate 2, which 
is the positive root of 

X 2 2 2 X 2 -Jt- x 3 
+ - -  - l, [A.2] 

r e + 2  1 + 2  

in the following form (Adamczyk & van de Ven 1983; Jeffery 1922): 

v l  = x ,  {~2, a3, - [ f l "  + 2 ( /1  - r ~ f l ' ) ] m l }  + x2(~22a3,  - rZ~fl 'yt~) + x3(~23a3i  - r~f l '~)  

22P2x, I x~ ( ~ _  ~¢) x~ (2.~¢ + ~)  1 [A.3a] 
(r E+2)A ~ ( 1 + 2 )  2 (1 + 2 )  2 ' 

VJ = X1(~210~32 - -  f l t~ t~ )  _~ X2 [(~22(X32 .gr_ (Oft - -  r e 2 f l ' ) , ~  - -  ( 2 ~  n + f l n ) ~ ]  ..~ X3(~23~32 _ ~ , ~ )  

22p2x2 [ x~ x] 1 
(1 + 2)A ~ (r 2 -~ 2 )  2 ( ~  - -  "5~¢) (I + 2 )  2 (2~' + ~¢) [A.3b] 
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and 

U J ~" X1(0C21 0C33 - -  f l ' ~ )  "1- X2(~22¢X33 - -  0 g ' ~ )  + X3 [0g23 0g33 "t- (0C" all- f l "  "l- f l  - -  r 2 f l ' ) d ~  ¢ + (20 t "  "1- f l " ) ~ ]  

22p2x3 I X~ (2~¢ + ~)-t x~ ] 
(1 + 2)A ~ -t (r 2 + 2------) (1 + 2) 5 (2~ + a¢) . [A.3c] 

Here 
1 [t X2X3 XlX2 XIX2 ,~ IX21 0t31 

~ = l + 2 [ \ l - - - ~ - ~ - # - + ~ f f + r - - ~ - ~ - X ' ) ,  M -  3f ig '  

'P 0t ~-- flg(20t22tX32 - -  0~230t33) - -  0~0 21~31 , ~  ~--. 0t220~33 "Jr" 0t23Ot32 

3fl~(2~ + / ~ )  ' 2~o 

and 

t 2 flo(r. + 1) fl;(r2, + 1) 

1 X~ X i+X i 
p2 = (r~ + 4) 5 + (I + 2) --------------~" 

Moreover, 

where 

f;~ d2 2 
= ( r ~ + 2 ) a  =q s(r~+2) t/2, 

7t 1 q = 2 , j  if re< 1 

I in I-~r. ~ + 2) ''2 + ~1~2] 
:~-~ L ~ + ~ J  

if re> 1, 

fl --- (1 + 2)A = A 2 '  

(1 + 2)2A 2s(1 + 2) 3 4s'  

fl,  = f ~  d2 = fl -______~ 
(r~ + 2)1/262 s ' 

and 

with 

and 

The corresponding integrals 
~0, ~ ,  ~ff, #o, #~ and #g. 

~" = f S  2d2 
(1 + 2)2A = # - ~' 

fl" = ~ 2 d2 
(1 + 2)'/2A 2 = ~ - fl'' 

A = (r~ + 2)1/2(1 + 2) 

s=re-2 i, st/2=(Ir~-ll)J/2 

with the lower limit of integration replaced by zero are denoted by 
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For an orbit constant C = 0, the matrix [3] reduces to (! 0 0 

cos(4~ + O) -sin(4~ + O) , 
~o - -  sin (~ + 0 )  cos (~b + 0 ) /  

and ~ ,  ~ and ~ are equal to zero. In the space fixed coordinate frame a,.j is a unit matrix and, 
additionally, ~ = 0 and ~r = (l/2a~). For  C -- oo, ~ and oct ° are equal to zero. 


